Acta Geodaetica et Cartographica Sinica ›› 2018, Vol. 47 ›› Issue (6): 693-704.doi: 10.11947/j.AGCS.2018.20170640
GONG Jianya, JI Shunping
Received:
2017-11-30
Revised:
2018-03-28
Online:
2018-06-20
Published:
2018-06-21
Supported by:
CLC Number:
GONG Jianya, JI Shunping. Photogrammetry and Deep Learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704.
[1] 龚健雅,季顺平.从摄影测量到计算机视觉[J].武汉大学学报(信息科学版),2017,42(11):1518-1522. GONG Jianya,JI Shunping.From Photogrammetry to Computer Vision[J].Geomatics and Information Science of Wuhan University,2017,42(11):1518-1522. [2] BOYLE W S,SMITH G E.Charge Coupled Semiconductor Devices[J].The Bell System Technical Journal,1970,49(4):587-593. [3] ASHBY W R.An Introduction to Cybernetics[M].London:Chapman & Hall Ltd,1961. [4] FODOR J A,PYLYSHYN Z W.Connectionism and Cognitive Architecture:A Critical Analysis[J].Cognition,1988,28(1-2):3-71. [5] HINTON G E,OSINDERO S,TEH Y W.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation,2006,18(7):1527-1554. [6] SUYKENS J A K,VANDERWALLE J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300. [7] KOLLER D,FRIEDMAN N.Probabilistic Graphical Models:Principles and Techniques[M].Cambridge:MIT Press,2009. [8] BENGIO Y,LAMBLIN P,POPOVICI D,et al.Greedy Layer-Wise Training of Deep Networks[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems.Canada:ACM,2006:153-160. [9] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet Classification with Deep Convolutional Neural Networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.Lake Tahoe,Nevada:ACM,2012:1097-1105. [10] MEHTA P,SCHWAB D J.An Exact Mapping between the Variational Renormalization Group and Deep Learning[J].arXiv Preprint arXiv:1410.3831,2014. [11] TISHBY N,PEREIRA F C,BIALEK W.The Information Bottleneck Method[J].arXiv Preprint arXiv:physics/0004057,2000. [12] HINTON G,DENG Li,YU Dong,et al.Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97. [13] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation Applied to Handwritten Zip Code Recognition[J].Neural Computation,1989,1(4):541-551. [14] KENDALL A,GRIMES M,CIPOLLA R.Posenet:A Convolutional Network for Real-time 6-dof Camera Relocalization[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Santiago,Chile:IEEE,2015:2938-2946. [15] KITTI.The KITTI Vision Benchmark Suite[DB/OL].[2018-03-01].http://www.cvlibs.net/datasets/kitti. [16] BENGIO Y,COURVILLE A,VINCENT P.Representation Learning:A Review and New Perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(8):1798-1828. [17] NG A.Sparse Autoencoder[R].CS294A Lecture Notes,2011,72(2011):1-19. [18] SANGER T D.Optimal Unsupervised Learning in A Single-layer Linear Feedforward Neural Network[J].Neural Networks,1989,2(6):459-473. [19] RUCK D W,ROGERS S K,KABRISKY M,et al.The Multilayer Perceptron as an Approximation to ABayes Optimal Discriminant Function[J].IEEE Transactions on Neural Networks,1990,1(4):296-298. [20] MIKOLOV T,KARAFIÁT M,BURGET L,et al.Recurrent Neural Network Based Language Model[C]//Proceedings of the 11th Annual Conference of the International Speech Communication Association.Makuhari,Chiba,Japan:International Speech Communication Association,2010,2:3. [21] MINSKY M L,PAPERT S A.Perceptrons[M].Cambridge:MIT Press,1969. [22] NAIR V,HINTON G E.Rectified Linear Units Improve Restricted Boltzmann Machines[C]//Proceedings of the 27th International Conference on Machine Learning.Haifa,Israel:ACM,2010:807-814. [23] SHORE J,JOHNSON R.Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-entropy[J].IEEE Transactions on Information Theory,1980,26(1):26-37. [24] MORÉ J J.The Levenberg-Marquardt Algorithm:Implementation and Theory[M]//WATSON G A.Numerical Analysis.Berlin,Heidelberg:Springer,1978:105-116. [25] LE CUN Y,BOSER B E,DENKER J S,et al.Handwritten Digit Recognition with a Back-propagation Network[M]//TOURETZKY D S.Advances in Neural Information Processing Systems.San Francisco,CA:Morgan Kaufmann Publishers Inc.,1990:396-404. [26] GOODFELLOW I,BENGIO Y,COURVILLE A.Deep Learning[M].Cambridge,Massachusetts:MIT Press,2016. [27] HORN B.Robot Vision[M].Cambridge:MIT Press,1986. [28] GRAHAM B.Fractional Max-pooling[J].arXiv Preprint arXiv:1412.6071,2014. [29] ZEILER M D,FERGUS R.Visualizing and Understanding Convolutional Networks[C]//European Conference on Computer Vision.Zurich,Switzerland:Springer,2014:818-833. [30] SZEGEDY C,LIU W,JIA Y,et al.Going Deeper with Convolutions[J].arXiv Preprint arXiv:1409.4842,2014. [31] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[J].arXiv Preprint arXiv:1409.1556,2014. [32] HE Kaiming,ZHANG Xianyu,REN Shaoqing,et al.Deep Residual Learning for Image Recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV:IEEE,2016:770-778. [33] KENDALL A,CIPOLLA R.Modelling Uncertainty in Deep Learning for Camera Relocalization[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation.Stockholm,Sweden:IEEE,2016:4762-4769. [34] ŽBONTAR J,LECUN Y.Computing the Stereo Matching Cost with a Convolutional Neural Network[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA:IEEE,2015:1592-1599. [35] KENDALL A,MARTIROSYAN H,DASGUPTA S,et al.End-to-end Learning of Geometry and Context for Deep Stereo Regression[C]//Proceedings of the IEEE Conference on Computer Vision.Venice,Italy:IEEE,2017:66-75. [36] SEKI A,POLLEFEYS M.SGM-Nets:Semi-global Matching with Neural Networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu,HI:IEEE,2017:21-26. [37] MAYER N,ILG E,HÄUSSER P,et al.A Large Dataset to Train Convolutional Networks for Disparity,Optical Flow,and Scene Flow Estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV:IEEE,2016:4040-4048. [38] LUO Wenjie,SCHWING A G,URTASUN R.Efficient Deep Learning for Stereo Matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV:IEEE,2016:5695-5703. [39] MARR D.Vision:A Computational Investigation into the Human Representation and Processing of Visual Information[M].San Francisco:W.H.Freeman and Company,1982. [40] CHENG Guangliang,WANG Ying,XU Shibiao,et al.Automatic Road Detection and Centerline Extraction via Cascaded End-to-end Convolutional Neural Network[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(6):3322-3337. [41] LI Peikang,ZANG Yu,WANG Cheng,et al.Road Network Extraction via Deep Learning and Line Integral Convolution[C]//Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IGARSS).Beijing,China:IEEE,2016:1599-1602. [42] MNIH V,HINTON G E.Learning to Detect Roads in High-resolution Aerial Images[C]//Proceedings of the 11th European Conference on Computer Vision.Heraklion,Crete,Greece:Springer,2010:210-223. [43] WANG Jun,SONG Jingwei,CHEN Mingquan,et al.Road Network Extraction:A Neural-dynamic Framework Based on Deep Learning and a Finite State Machine[J].International Journal of Remote Sensing,2015,36(12):3144-3169. [44] PANBOONYUEN T,JITKAJORNWANICH K,LAWAWIROJWONG S,et al.Road Segmentation of Remotely-sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields[J].Remote Sensing,2017,9(7):680. [45] VAKALOPOULOU M,KARANTZALOS K,KOMODAKIS N,et al.Building Detection in Very High Resolution Multispectral Data with Deep Learning Features[C]//Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IGARSS).Milan,Italy:IEEE,2015:1873-1876. [46] KUSSUL N,LAVRENIUK M,SKAKUN S,et al.Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[J].IEEE Geoscience and Remote Sensing Letters,2017,14(5):778-782. [47] CASTELLUCCIO M,POGGI G,SANSONE C,et al.Land Use Classification in Remote Sensing Images by Convolutional Neural Networks[J].arXiv Preprint arXiv:1508.00092,2015. [48] ZHANG Liangpei,ZHANG Lefei,DU Bo.Deep Learning for Remote Sensing Data:A Technical Tutorial on the State of the Art[J].IEEE Geoscience and Remote Sensing Magazine,2016,4(2):22-40. |
[1] | ZHANG Zuxun, JIANG Huiwei, PANG Shiyan, HU Xiangyun. Review and prospect in change detection of multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1091-1107. |
[2] | ZHANG Liangpei, HE Jiang, YANG Qianqian, XIAO Yi, YUAN Qiangqiang. Data-driven multi-source remote sensing data fusion: progress and challenges [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1317-1337. |
[3] | XU Qiang, ZHU Xing, LI Weile, DONG Xiujun, DAI Keren, JIANG Yanan, LU Huiyan, GUO Chen. Technical progress of space-air-ground collaborative monitoring of landslide [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. |
[4] | ZHANG Li, LIU Yuxuan, SUN Yangjie, LAN Chaozhen, AI Haibin, FAN Zhongli. A review of developments in the theory and technology of three-dimensional reconstruction in digital aerial photogrammetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1437-1457. |
[5] | CHENG Tao, ZHANG Yang, James Haworth. Network and graph-based SpaceTimeAI: conception, method and applications [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1629-1639. |
[6] | ZHANG Zuxun, ZHENG Shunyi, WANG xiaonan. Development and application of industrial photogrammetry technology [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 843-853. |
[7] | GONG Jianya, HUAN Linxi, ZHENG Xianwei. Deep learning interpretability analysis methods in image interpretation [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 873-884. |
[8] | ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. |
[9] | LI Qingquan, HUANG Hui, JIANG San, HU Qingwu, YU Wenshuai. Optimized views photogrammetry and its precision analysis [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 996-1007. |
[10] | GONG Jianya, ZHANG Mi, HU Xiangyun, ZHANG Zhan, LI Yansheng, Jiang Liangcun. The design of deep learning framework and model for intelligent remote sensing [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 475-487. |
[11] | MAO Wenjing, WANG Weilin, JIAO Limin, LIU Anbao. Continuous spatial coverage PM2.5 concentration forecast in China based on deep learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 361-372. |
[12] | JIN Fei, GUAN Kai, LIU Zhi, HAN Jiarong, RUI Jie, LI Qinggao. A performing analysis of unsupervised dense matching feature extraction networks [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 426-436. |
[13] | HE Zhimeng, DING Haiyong, AN Bingqi. E-Unet: a atrous convolution-based neural network for building extraction from high-resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 457-467. |
[14] | ZHANG Yuxin, YAN Qingsong, DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. |
[15] | ZHANG Yongsheng, ZHANG Zhenchao, TONG Xiaochong, JI Song, YU Ying, LAI Guangling. Progress and challenges of geospatial artificial intelligence [J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1137-1146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||