[1] 杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10):1509-1516.DOI:10.11947/j.AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1509-1516.DOI:10.11947/j.AGCS.2017.20170351. [2] 廖小罕. 中国对地观测20年科技进步和发展[J]. 遥感学报, 2021, 25(1):267-275. LIAO Xiaohan. Scientific and technological progress and development prospect of the earth observation in China in the past 20 years[J]. National Remote Sensing Bulletin, 2021, 25(1):267-275. [3] 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. [4] 杨必胜, 董震. 点云智能处理[M]. 北京:科学出版社, 2020. YANG Bisheng, DONG Zhen. Intelligent processing of point cloud[M]. Beijing:Science Press, 2020. [5] MA J W, CZERNIAWSKI T, LEITE F. Semantic segmentation of point clouds of building interiors with deep learning:Augmenting training datasets with synthetic BIM-based point clouds[J]. Automation in Construction, 2020, 113:103144. [6] DONG Zhen, YANG Bisheng, HU Pingbo, et al. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137:112-133. [7] YI Li, SU Hao, GUO Xingwen, et al. SyncSpecCNN:synchronized spectral CNN for 3D shape segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI, USA:IEEE, 2017:6584-6592. [8] WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA:IEEE, 2015:1912-1920. [9] DAI A, CHANG A X, SAVVA M, et al. ScanNet:richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:2432-2443. [10] HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3d.net:a new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1:91-98. [11] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012:3354-3361. [12] DONG Zhen, LIANG Fuxun, YANG Bisheng, et al. Registration of large-scale terrestrial laser scanner point clouds:a review and benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:327-342. [13] 杨必胜, 韩旭, 董震. 点云深度学习基准数据集[J]. 遥感学报, 2021, 25(1):231-240. YANG Bisheng, HAN Xu, DONG Zhen. Point Cloud Benchmark Dataset WHU-TLS and WHU-MLS for Deep Learning[J]. Journal of Remote Sensing, 2021, 25(1):231-240. [14] FANG Hao, LAFARGE F. Pyramid scene parsing network in 3D:Improving semantic segmentation of point clouds with multi-scale contextual information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154:246-258. [15] HU Qingyong, YANG Bo, XIE Linhai, et al. RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA:IEEE, 2020:11105-11114. [16] CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3D object detection network for autonomous driving[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA:IEEE, 2017:6526-6534. [17] YANG Bin, LUO Wenjie, URTASUN R. PIXOR:real-time 3D object detection from point clouds[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE, 2018:7652-7660. [18] LANG A H, VORA S, CAESAR H, et al. PointPillars:fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:IEEE, 2019:12689-12697. [19] GRAHAM B, ENGELCKE M, MAATEN L V D. 3D semantic segmentation with submanifold sparse convolutional networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, UT, USA:IEEE, 2018:9224-9232. [20] MENG H Y, GAO Lin, LAI Yukun, et al. VV-net:voxel VAE net with group convolutions for point cloud segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South):IEEE, 2019:8499-8507. [21] CHARLES R, SU H, KAICHUN M, et al. PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation[C/OL]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu, HI, USA:IEEE,2017. [22] QI C R, YI Li, SU Hao, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA:Curran Associates Inc., 2017:5105-5114. [23] WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5):1-12. [24] JIANG Li, ZHAO Hengshuang, LIU Shu, et al. Hierar chical point-edge interaction network for point cloud semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South):IEEE, 2019:10432-10440. DOI:10.1109/ICCV.2019.01053. [25] HERMOSILLA P, RITSCHEL T, VÁZQUEZ P P, et al. Monte Carlo convolution for learning on non-uniformly sampled point clouds[J]. ACM Transactions on Graphics, 2019, 37(6):1-12. [26] XU Yifan, FAN Tianqi, XU Mingye, et al. SpiderCNN:deep learning on point sets with parameterized convolutional filters[M]//FERRARI V, HEBERT M, SMINCHISESCU C, et al.Computer Vision-ECCV 2018. Cham:Springer International Publishing, 2018:90-105. DOI:10.1007/978-3-030-01237-3_6. [27] WU Wenxuan, QI Z, FUXIN Li. PointConv:deep convolutional networks on 3D point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach, CA, USA:IEEE, 2019:9613-9622. [28] ZHANG Rui, LI Guangyun, LI Minglei, et al. Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143:85-96. [29] LUO Zhipeng, LIU Di, LI J, et al. Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161:147-163. |