Acta Geodaetica et Cartographica Sinica ›› 2025, Vol. 54 ›› Issue (6): 1107-1121.doi: 10.11947/j.AGCS.2025.20240384
• Cartography and Geoinformation • Previous Articles Next Articles
Xiaoya AN1,2,3(
), Weiru GUO4, Pengxin ZHANG3,4, Xinxin LI5, Lei SHI5
Received:2024-09-18
Revised:2025-04-22
Online:2025-07-14
Published:2025-07-14
About author:AN Xiaoya (1982—), male, associate researcher, majors in cartography and geographic information systems. E-mail: chxyaxy2022@163.com
Supported by:CLC Number:
Xiaoya AN, Weiru GUO, Pengxin ZHANG, Xinxin LI, Lei SHI. Ship trajectories clustering method considering similarity in geometric position and mobility features[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1107-1121.
Tab. 1
Comparison of results for AIS trajectory classification between two models"
| 预测类型 | 真实类型 | 拖船 | 渔船 | 帆船/游艇 | 客船 | 货船 | 精确率 | 召回率 | F1值 |
|---|---|---|---|---|---|---|---|---|---|
| 一维U-net | 拖船 | 160 | 7 | 2 | 1 | 8 | 0.94 | 0.90 | 0.92 |
| 渔船 | 1 | 166 | 28 | 0 | 1 | 0.89 | 0.85 | 0.87 | |
| 帆船/游艇 | 2 | 13 | 196 | 6 | 2 | 0.84 | 0.90 | 0.87 | |
| 客船 | 0 | 0 | 6 | 176 | 2 | 0.92 | 0.96 | 0.94 | |
| 货船 | 7 | 0 | 0 | 8 | 170 | 0.93 | 0.92 | 0.92 | |
| LSTM | 拖船 | 136 | 6 | 14 | 3 | 19 | 0.87 | 0.76 | 0.81 |
| 渔船 | 5 | 151 | 21 | 9 | 10 | 0.87 | 0.77 | 0.82 | |
| 帆船/游艇 | 8 | 15 | 169 | 19 | 8 | 0.76 | 0.77 | 0.77 | |
| 客船 | 1 | 1 | 15 | 160 | 7 | 0.72 | 0.87 | 0.79 | |
| 货船 | 6 | 0 | 2 | 32 | 145 | 0.77 | 0.78 | 0.78 |
| [1] |
刘海砚, 郭漩, 刘俊楠. 时空和语义结合的船舶轨迹数据压缩方法[J]. 测绘学报, 2023, 52(11): 1974-1982. DOI: .
doi: 10.11947/j.AGCS.2023.20210658 |
|
LIU Haiyan, GUO Xuan, LIU Junnan. A vessel trajectory data compression method combining spatio-temporal and semantic features[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1974-1982. DOI: .
doi: 10.11947/j.AGCS.2023.20210658 |
|
| [2] | GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[J]. Information Systems, 2001, 26(1): 35-58. |
| [3] | PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245. |
| [4] | ZHANG Rui, WU Hanyue, YIN Zhenzhong, et al. Predictive clustering of vessel behavior based on hierarchical trajectory representation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 19496-19506. |
| [5] | JIANG Yan, LI Bo, ZHANG Hao, et al. A novel classification scheme of moving targets at sea based on ward's and K-means clustering[C]//Proceedings of the 2nd International Conference on Computer Science and Application Engineering. Hohhot: ACM Press, 2018: 1-5. |
| [6] | ZHEN Rong, JIN Yongxing, HU Qinyou, et al. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and Naïve Bayes classifier[J]. Journal of Navigation, 2017, 70(3): 648-670. |
| [7] | MA Wenyao, WU Zhaolin, YANG Jiaxuan, et al. Vessel motion pattern recognition based on one-way distance and spectral clustering algorithm[M]//Algorithms and Architectures for Parallel Processing. Cham: Springer International Publishing, 2014: 461-469. |
| [8] | GAO Miao, SHI Guoyou. Ship-handling behavior pattern recognition using AIS sub-trajectory clustering analysis based on the T-SNE and spectral clustering algorithms[J]. Ocean Engineering, 2020, 205: 106919. |
| [9] | ZHAO Liangbin, SHI Guoyou, YANG Jiaxuan. An adaptive hierarchical clustering method for ship trajectory data based on DBSCAN algorithm[C]//Proceedings of 2017 IEEE International Conference on Big Data Analysis. Beijing: IEEE, 2017: 329-336. |
| [10] | ZHAO Liangbin, SHI Guoyou. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172: 456-467. |
| [11] | LI Ye, REN Hongxiang. Visual analysis of vessel behaviour based on trajectory data: a case study of the Yangtze River Estuary[J]. ISPRS International Journal of Geo-Information, 2022, 11(4): 244. |
| [12] | WANG Lianhui, CHEN Pengfei, CHEN Linying, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach[J]. Journal of Marine Science and Engineering, 2021, 9(6): 566. |
| [13] | 甄荣, 石自强. 一种基于高斯混合模型的船舶航迹聚类方法[J]. 船舶工程, 2021, 43(11): 139-143. |
| ZHEN Rong, SHI Ziqiang. Ship trajectory clustering method based on Gaussian mixture model[J]. Ship Engineering, 2021, 43(11): 139-143. | |
| [14] | YAO Di, ZHANG Chao, ZHU Zhihua, et al. Learning deep representation for trajectory clustering[J]. Expert Systems, 2018, 35(2): e12252. |
| [15] | LIANG Maohan, LIU R W, LI Shichen, et al. An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation[J]. Ocean Engineering, 2021, 225: 108803. |
| [16] | WANG Chao, HUANG Jiahui, WANG Yongheng, et al. A deep spatiotemporal trajectory representation learning framework for clustering[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7687-7700. |
| [17] | 甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测:研究进展与展望[J]. 地球信息科学学报, 2021, 23(12): 2111-2127. |
| ZHEN Rong, SHAO Zheping, PAN Jiacai. Advance in character mining and prediction of ship behavior based on AIS data[J]. Journal of Geo-Information Science, 2021, 23(12): 2111-2127. | |
| [18] | ZHONG Hanyang, SONG Xin, YAN Zhenguo. Vessel sailing patterns analysis from S-AIS data based on K-means clustering algorithm[C]//Proceedings of the 4th International Conference on Big Data Analytics. Suzhou: IEEE, 2019: 10-13. |
| [19] | LIU Lei, ZHANG Yong, HU Yue, et al. A hybrid-clustering model of ship trajectories for maritime traffic patterns analysis in port area[J]. Journal of Marine Science and Engineering, 2022, 10(3): 342. |
| [20] | 安健鹏, 李海霞, 雷亚丽, 等. 基于大数据的船舶活动轨迹规律挖掘方法[J]. 火力与指挥控制, 2024, 49(4): 156-163. |
| AN Jianpeng, LI Haixia, LEI Yali, et al. Mining method of ship activity trajectory pattern based on big data[J]. Fire Control & Command Control, 2024, 49(4): 156-163. | |
| [21] | ZHANG Yuanqiang, MA Yong, LIU Jiao. Ship trajectory segmentation and semisupervised clustering via geospatial background knowledge[J]. Ocean Engineering, 2024, 304: 117872. |
| [22] | 刘海杨, 孟令航, 林仲航, 等. 基于轨迹点聚类的航路发现方法[J]. 计算机应用, 2022, 42(3): 890-894. |
| LIU Haiyang, MENG Linghang, LIN Zhonghang, et al. Route discovery method based on trajectory point clustering[J]. Journal of Computer Applications, 2022, 42(3): 890-894. | |
| [23] | 张鹏鑫, 李连营, 杨敏, 等. 顾及运动行为特征变化的船舶轨迹分类模型[J]. 测绘科学, 2023, 48(5): 25-34. |
| ZHANG Pengxin, LI Lianying, YANG Min, et al. A ship trajectory classification model considering changes in characteristics of motion behavior[J]. Science of Surveying and Mapping, 2023, 48(5): 25-34. | |
| [24] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI. Cham: Springer International Publishing, 2015: 234-241. |
| [25] | 李文杰, 闫世强, 蒋莹, 等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7, 148. |
| LI Wenjie, YAN Shiqiang, JIANG Ying, et al. Research on method of self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2019, 55(5): 1-7, 148. | |
| [26] | WANG Lianhui, CHEN Pengfei, CHEN Linying, et al. Ship AIS trajectory clustering: an HDBSCAN-based approach[J]. Journal of Marine Science and Engineering, 2021, 9(6): 566. |
| [27] | 万佳, 胡大裟, 蒋玉明. 多密度自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2022, 58(2): 78-85. |
| WAN Jia, HU Dasha, JIANG Yuming. Research on method of multi-density self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2022, 58(2): 78-85. | |
| [28] | ROUSSEEUW P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. |
| [29] | DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(2): 224-227. |
| [1] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [2] | Qingli LUO, Xueyan LI, Guoman HUANG, Honghui CHEN, Minglong XUE, Jian LI. AOSN: alpha optimal structure network for height estimation from a single SAR image in mountain areas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 888-898. |
| [3] | Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344. |
| [4] | Zhenghua ZHANG, Guoliang CHEN. A lightweight rotation-invariant network for LiDAR-based place recognition [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 90-103. |
| [5] | Yan SHI, Da WANG, Min DENG, Xuexi YANG. Spatio-temporal anomaly detection: connotation transformation and implementation path from data-driven to knowledge-driven modeling [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1493-1504. |
| [6] | Xin YAN, Li SHEN, Junjie PAN, Yanshuai DAI, Jicheng WANG, Xiaoli ZHENG, Zhi-lin LI. Weakly supervised building change detection integrating multi-scale feature fusion and spatial refinement for high resolution remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(8): 1586-1597. |
| [7] | Jinwei BU, Kegen YU, Qiulan WANG, Linghui LI, Xinyu LIU, Xiaoqing ZUO, Jun CHANG. Deep learning retrieval method for global ocean significant wave height by integrating spaceborne GNSS-R data and multivariable parameters [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1321-1335. |
| [8] | Liming JIANG, Yi SHAO, Zhiwei ZHOU, Peifeng MA, Teng WANG. A review of intelligent InSAR data processing: recent advancements, challenges and prospects [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1037-1056. |
| [9] | Chi GUO, Yang LIU, Yarong LUO, Jingnan LIU, Quan ZHANG. Research progress in the application of image semantic information in visual SLAM [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1057-1076. |
| [10] | Xunqiang GONG, Hongyu WANG, Tieding LU, Wei YOU. A general progressive decomposition long-term prediction network model for high-speed railway bridge pier settlement [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1113-1127. |
| [11] | Haiyan GU, Yi YANG, Haitao LI, Lijian SUN, Shaopeng DING, Shiqi LIU. Dynamic construction of high-resolution remote sensing image sample datasets and intelligent interpretation applications [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1165-1179. |
| [12] | Shaopeng DING, Xiushan LU, Rufei LIU, Yi YANG, Haiyan GU, Haitao LI. Building change detection method combining object feature guidance and multiple attention mechanism [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(6): 1224-1235. |
| [13] | Huimin LIU, Chenwei ZHANG, Kaiqi CHEN, Min DENG, Chong PENG. Deep learning-based spatio-temporal prediction and uncertainty assessment of urban PM2.5 distribution [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 750-760. |
| [14] | SUN Chuanmeng, WEI Yu, LI Xinyu, MA Tiehua, WU Zhibo. Intelligent detection method of image water level inversion for water level without water scale in complex scenes [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(3): 558-568. |
| [15] | LIAO Zhaohong, ZHANG Yichen, YANG Biao, LIN Mingchun, SUN Wenbo, GAO Zhi. Monocular height estimation method of remote sensing image based on Swin Transformer-CNN and its application in highway road construction sites [J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(2): 344-352. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||