Acta Geodaetica et Cartographica Sinica ›› 2024, Vol. 53 ›› Issue (7): 1384-1400.doi: 10.11947/j.AGCS.2024.20230455
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
Jun YANG1,2(
), Hengjing XIE1, Hongchao FAN3, Haowen YAN1
Received:2023-10-07
Published:2024-08-12
About author:YANG Jun (1973—), male, PhD, professor, PhD supervisor, majors in 3D model spatial analysis, intelligent interpretation of remotely sensed big data, deep learning. E-mail: yangj@mail.lzjtu.cn
Supported by:CLC Number:
Jun YANG, Hengjing XIE, Hongchao FAN, Haowen YAN. Multi-scale entropy neural architecture search for object detection in remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(7): 1384-1400.
Comparison of results before and after data preprocessing"
| 不同数据集的预处理 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| 未经过数据预处理(RSOD) | 207.63×109 | 30.29×106 | 92.4 | 99.2 | 98.5 | 67.6 | 89.8 | 94.7 |
| 经过数据预处理(RSOD) | 207.63×109 | 30.29×106 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
| 未经过数据预处理(DIOR) | 144.41×109 | 30.04×106 | 72.1 | 90.8 | 80.7 | 38.5 | 68.0 | 84.8 |
| 经过数据预处理(DIOR) | 144.41×109 | 30.04×106 | 75.5 | 92.6 | 84.4 | 44.3 | 72.1 | 87.0 |
| 未经过数据预处理(DOTA) | 208.15×109 | 30.31×106 | 70.8 | 87.5 | 81.6 | 50.0 | 76.6 | 82.5 |
| 经过数据预处理(DOTA) | 208.15×109 | 30.31×106 | 73.6 | 89.2 | 83.9 | 53.4 | 80.5 | 85.0 |
Comparison of different network models on the RSOD dataset"
| 网络模型 | 浮点运算数 | 参数量 | 网络搜索时间/h | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | 841.40×109 | 41.14×106 | — | 84.9 | 99.5 | 96.4 | 61.0 | 83.0 | 88.0 |
| ResNet-SB | 298.57×109 | 46.89×106 | — | 77.4 | 97.5 | 90.5 | 23.3 | 66.4 | 82.3 |
| VarifocalNet | 218.57×109 | 32.49×106 | — | 87.8 | 99.1 | 96.9 | 56.0 | 82.9 | 91.3 |
| NAS-FCOS | 216.31×109 | 38.67×106 | 11.4 | 77.3 | 98.0 | 89.2 | 26.9 | 75.0 | 83.1 |
| DetNAS | 201.67×109 | 32.79×106 | 12.6 | 85.5 | 99.5 | 97.9 | 63.2 | 83.2 | 88.6 |
| 本文方法 | 207.63×109 | 30.29×106 | 8.1 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
Comparison of different network models on the DIOR dataset"
| 网络模型 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | 798.04×109 | 32.95×106 | 66.1 | 88.8 | 74.2 | 12.2 | 50.8 | 76.2 |
| ResNet-SB | 216.40×109 | 41.22×106 | 52.0 | 76.4 | 57.5 | 9.7 | 31.2 | 62.1 |
| VarifocalNet | 159.35×109 | 32.49×106 | 70.1 | 89.6 | 78.3 | 35.2 | 64.6 | 83.0 |
| NAS-FCOS | 230.62×109 | 38.15×106 | 55.7 | 80.4 | 60.6 | 10.4 | 35.8 | 65.5 |
| DetNAS | 208.47×109 | 25.38×106 | 67.8 | 91.3 | 78.3 | 36.1 | 60.6 | 74.4 |
| 本文方法 | 144.41×109 | 30.04×106 | 75.5 | 92.6 | 84.4 | 44.3 | 72.1 | 87.0 |
Comparison of detection accuracy for different object categories on the DIOR dataset"
| 类别 | Faster R-CNN | ResNet-SB | VarifocalNet | NAS-FCOS | DetNAS | 本文方法 |
|---|---|---|---|---|---|---|
| 飞机 | 81.5 | 67.8 | 72.7 | 75.5 | 80.6 | 81.3 |
| 机场 | 66.0 | 42.2 | 79.9 | 52.2 | 58.2 | 81.6 |
| 棒球场 | 86.5 | 77.6 | 83.2 | 83.5 | 85.4 | 86.0 |
| 篮球场 | 81.0 | 63.9 | 85.5 | 68.7 | 81.9 | 90.4 |
| 桥梁 | 43.7 | 31.8 | 48.8 | 27.5 | 55.3 | 60.0 |
| 烟囱 | 81.7 | 74.7 | 84.0 | 80.0 | 82.0 | 83.6 |
| 水坝 | 55.0 | 36.5 | 73.3 | 35.4 | 58.5 | 77.1 |
| 高速公路服务区 | 70.1 | 44.0 | 80.4 | 53.1 | 68.7 | 85.6 |
| 高速公路收费站 | 74.3 | 63.3 | 76.0 | 57.4 | 76.4 | 81.0 |
| 高尔夫球场 | 61.8 | 43.9 | 80.9 | 56.3 | 62.2 | 86.8 |
| 田径场 | 82.2 | 65.6 | 81.6 | 65.5 | 81.4 | 86.7 |
| 港口 | 41.7 | 26.3 | 41.7 | 34.0 | 51.4 | 52.4 |
| 立交桥 | 57.0 | 44.3 | 61.1 | 38.9 | 61.9 | 68.2 |
| 船舶 | 47.0 | 43.1 | 49.8 | 48.6 | 48.7 | 54.5 |
| 体育场 | 77.9 | 69.2 | 86.4 | 67.9 | 81.2 | 89.0 |
| 储油罐 | 67.3 | 62.5 | 58.7 | 71.3 | 71.0 | 64.6 |
| 网球场 | 90.4 | 79.9 | 86.0 | 82.0 | 89.5 | 89.1 |
| 火车站 | 49.2 | 19.2 | 71.1 | 25.4 | 52.1 | 76.2 |
| 车辆 | 46.7 | 42.0 | 43.4 | 47.0 | 53.0 | 53.2 |
| 风车 | 56.1 | 43.2 | 61.2 | 43.3 | 56.5 | 66.4 |
Comparison of different network models on the DOTA dataset"
| 网络模型 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| Faster R-CNN | 264.11×109 | 41.53×106 | 57.3 | 81.6 | 66.3 | 35.5 | 62.3 | 68.7 |
| ResNet-SB | 263.78×109 | 41.19×106 | 61.2 | 85.3 | 72.1 | 38.5 | 66.5 | 75.0 |
| VarifocalNet | 245.69×109 | 32.52×106 | 66.1 | 86.7 | 77.1 | 45.5 | 70.0 | 79.0 |
| NAS-FCOS | 249.36×109 | 38.69×106 | 54.5 | 80.6 | 62.2 | 27.3 | 58.8 | 69.0 |
| DetNAS | 270.02×109 | 29.20×106 | 58.4 | 84.0 | 68.5 | 42.6 | 62.2 | 65.9 |
| 本文方法 | 208.15×109 | 30.31×106 | 73.6 | 89.2 | 83.9 | 53.4 | 80.5 | 85.0 |
Tab.8
Comparison of detection accuracy for different object categories on the DOTA dataset"
| 类别 | FasterR-CNN | ResNet-SB | VarifocalNet | FCOSNAS- | DetNAS | 本文方法 |
|---|---|---|---|---|---|---|
| 飞机 | 74.5 | 74.9 | 81.0 | 73.8 | 75.1 | 83.7 |
| 船舶 | 43.8 | 43.2 | 56.6 | 42.5 | 53.5 | 58.0 |
| 储油罐 | 46.3 | 47.5 | 60.6 | 46.6 | 52.6 | 60.5 |
| 棒球场 | 59.4 | 65.4 | 65.9 | 63.0 | 55.9 | 78.2 |
| 网球场 | 87.9 | 88.3 | 93.1 | 85.3 | 88.8 | 94.5 |
| 篮球场 | 76.5 | 77.2 | 79.8 | 71.7 | 71.0 | 89.9 |
| 操场 | 64.0 | 70.0 | 71.6 | 36.8 | 59.9 | 83.3 |
| 港口 | 59.3 | 62.9 | 67.7 | 56.5 | 61.3 | 74.5 |
| 桥梁 | 43.8 | 50.5 | 56.6 | 39.6 | 54.8 | 77.3 |
| 大型车辆 | 63.6 | 64.7 | 73.7 | 61.8 | 66.7 | 76.4 |
| 小型车辆 | 37.1 | 38.8 | 47.9 | 36.4 | 42.2 | 52.3 |
| 直升机 | 53.8 | 67.6 | 67.0 | 58.4 | 62.0 | 77.1 |
| 环形交叉路口 | 54.1 | 58.6 | 65.3 | 54.7 | 51.0 | 79.1 |
| 足球场 | 58.7 | 66.7 | 47.1 | 51.8 | 47.0 | 60.3 |
| 游泳池 | 37.6 | 42.4 | 48.4 | 38.8 | 34.4 | 55.3 |
Comparison of backbone networks with different weight ratios in the low-level section"
| α1:α2:α3:α4:α5 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| 1∶1∶1∶1∶1 | 894.54×109 | 31.25×106 | 88.3 | 98.7 | 97.3 | 61.2 | 84.7 | 89.7 |
| 0∶1∶1∶1∶1 | 476.23×109 | 30.26×106 | 90.9 | 99.2 | 97.8 | 65.4 | 85.3 | 91.5 |
| 0∶0∶1∶1∶1 | 206.28×109 | 28.60×106 | 91.8 | 99.2 | 98.1 | 65.0 | 88.0 | 94.0 |
| 0∶0∶0∶1∶1 | 131.77×109 | 28.17×106 | 89.5 | 98.9 | 97.7 | 60.8 | 86.5 | 92.9 |
Comparison of backbone network scales under different weight ratios"
| α3:α4:α5 | 浮点运算数 | 参数量 | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|
| 1∶1∶1 | 206.28×109 | 28.60×106 | 91.3 | 99.2 | 98.1 | 65.0 | 88.0 | 94.0 |
| 1∶1∶2 | 206.31×109 | 29.84×106 | 92.1 | 99.2 | 98.5 | 67.7 | 87.7 | 94.5 |
| 1∶1∶3 | 207.92×109 | 29.93×106 | 92.8 | 99.2 | 98.6 | 68.5 | 9.5 | 95.2 |
| 1∶1∶4 | 207.63×109 | 30.29×106 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
| 1∶1∶5 | 207.18×109 | 30.60×106 | 92.9 | 99.2 | 98.7 | 68.4 | 89.8 | 95.2 |
| 1∶1∶6 | 208.39×109 | 30.12×106 | 93.0 | 99.2 | 98.7 | 68.3 | 90.3 | 95.3 |
| 1∶1∶7 | 207.95×109 | 30.91×106 | 92.8 | 99.2 | 98.5 | 66.9 | 90.2 | 95.4 |
| 1∶1∶8 | 208.01×109 | 29.96×106 | 92.2 | 99.2 | 98.3 | 64.8 | 89.6 | 94.8 |
Tab.11
Ablation experiments on the RSOD dataset"
| 模型 | 说明 | 浮点运算数 | 参数量 | 网络搜索时间/h | mAP/(%) | AP50/(%) | AP75/(%) | APs/(%) | APm/(%) | APl/(%) |
|---|---|---|---|---|---|---|---|---|---|---|
| Model-1 | Baseline | 203.83×109 | 28.86×106 | 7.5 | 88.9 | 99.0 | 97.9 | 57.3 | 86.0 | 92.0 |
| Model-2 | Baseline+渐进式进化算法 | 199.84×109 | 26.85×106 | 6.2 | 89.0 | 98.9 | 97.9 | 56.8 | 86.2 | 92.3 |
| Model-3 | Baseline+FSResBlock | 209.61×109 | 30.33×106 | 9.2 | 92.9 | 99.2 | 98.6 | 68.3 | 90.1 | 95.4 |
| Model-4 | Baseline+渐进式进化算法+FSResBlock | 207.63×109 | 30.29×106 | 8.1 | 93.1 | 99.2 | 98.7 | 68.6 | 89.9 | 95.4 |
| [1] | 周鹏, 杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5):47-57. |
| ZHOU Peng, YANG Jun. Semantic segmentation of remote sensing images based on neural architecture search[J]. Journal of Xidian University, 2021, 48(5):47-57. | |
| [2] | 陈丁, 万刚, 李科. 多层特征与上下文信息相结合的光学遥感影像目标检测[J]. 测绘学报, 2019, 48(10):1275-1284. DOI: 10.11947/j.AGCS.2019.20180431. |
| CHEN Ding, WAN Gang, LI Ke. Object detection in optical remote sensing images based on combination of multi-layer feature and context information[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1275-1284. DOI: 10.11947/j.AGCS.2019.20180431. | |
| [3] | CHEN Zhanlong, LI Shuangjiang, XU Yongyang, et al. Correg-YOLOv3: a method for dense buildings detection in high-resolution remote sensing images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2):51-61. DOI: 10.11947/j.JGGS.2023.0206. |
| [4] | 杨军, 韩鹏飞. 采用神经网络架构搜索的高分遥感影像目标检测 [J/OL]. 吉林大学学报 (工学版): 1-12 [2023-07-01]. DOI: 10.13229/j.cnki.jdxbgxb20221472. |
| YANG Jun, HAN Pengfei. Object detection of high-resolution remote sensing images by neural architecture search [J/OL]. Journal of Jilin University (Engineering Edition): 1-12 [2023-07-01]. DOI: 10.13229/j.cnki.jdxbgxb20221472. | |
| [5] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2014: 580-587. |
| [6] | ZOPH B, LE Q V. Neural architecture search with reinforcement learning [EB/OL]. [2023-08-01]. https://openreview.net/pdf?id=r1Ue8Hcxg. |
| [7] | PHAM H, GUAN M, ZOPH B, et al. Efficient neural architecture search via parameters sharing [C]//Proceedings of 2018 International Conference on Machine Learning. Stockholm: Springer, 2018: 4095-4104. |
| [8] | REAL E, AGGARWAL A, HUANG Y, et al. Regularized evolution for image classifier architecture search [C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Hawaii: AAAI, 2019: 4780-4789. |
| [9] | LIU H, SIMONYAN K, YANG Y. DARTS: differentiable architecture search [EB/OL]. [2023-08-01]. https://arxiv.org/pdf/1806.09055v2. |
| [10] | GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7036-7045. |
| [11] | LIANG Tingting, WANG Yongtao, TANG Zhi, et al. OPANAS: one-shot path aggregation network architecture search for object detection[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10195-10203. |
| [12] | WANG Ning, GAO Yang, CHEN Hao, et al. NAS-FCOS: fast neural architecture search for object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11940-11948. |
| [13] | CHEN Yukang, YANG Tong, ZHANG Xiangyu, et al. DetNAS: backbone search for object detection[J]. Advances in Neural Information Processing Systems, 2019, 32:6638-6648. |
| [14] | PENG Cheng, LI Yangyang, SHANG Ronghua, et al. RSBNet: one-shot neural architecture search for a backbone network in remote sensing image recognition[J]. Neurocomputing, 2023, 537:110-127. |
| [15] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
| [16] | WU Yuxin, HE Kaiming. Group normalization [C]//Proceedings of 2018 European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
| [17] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1724-1734. |
| [18] | WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11534-11542. |
| [19] | HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. |
| [20] | KESAVAN H K, KAPUR J N. The generalized maximum entropy principle[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5):1042-1052. |
| [21] | NIELSEN F, NOCK R. MaxEnt upper bounds for the differential entropy of univariate continuous distributions[J]. IEEE Signal Processing Letters, 2017, 24(4):402-406. |
| [22] | CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13039-13048. |
| [23] | NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1520-1528. |
| [24] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 15:1125-1131. |
| [25] | TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636. |
| [26] | LI Xiang, WANG Wenhai, WU Lijun, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection [J]. Advances in Neural Information Processing Systems, 2020, 33:21002-21012. |
| [27] | LONG Yang, GONG Yiping, XIAO Zhifeng, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2486-2498. |
| [28] | LI Ke, WAN Gang, CHENG Gong, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307. |
| [29] | XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983. |
| [30] | XIAO Bin, TANG Han, JIANG Yanjun, et al. Brightness and contrast controllable image enhancement based on histogram specification[J]. Neurocomputing, 2018, 275:2798-2809. |
| [31] | HE Zhezhi, RAKIN A S, FAN Deliang. Parametric noise injection: trainable randomness to improve deep neural network robustness against adversarial attack[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 588-597. |
| [32] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. |
| [33] | WIGHTMAN R, TOUVRON H, JÉGOU H. ResNet strikes back: an improved training procedure in timm [EB/OL]. [2023-08-01]. https://openreview.net/pdf?id=NG6MJnVl6M5. |
| [34] | ZHANG Haoyang, WANG Ying, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8514-8523. |
| [1] | Shunping JI, Jin LIU, Jian GAO, Jianya GONG. An intelligent 3D reconstruction framework via deep learning based multi-view image matching [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1633-1646. |
| [2] | Kai YAN, Jianming XU, Qiao WANG. Earth surface anomaly detection based on lightweight large vision model features in remotely sensed imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1664-1676. |
| [3] | Tianjun WU, Manjia LI, Jiancheng LUO, Ziqi LI, Xiaodong HU, Lijing GAO, Zhanfeng SHEN. Farmland-parcel-based crop remote sensing classification method in complex mountainous areas via coupling spatial distribution patterns [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1215-1229. |
| [4] | Yakun XIE, Yaoji ZHAO, Jiaxing TU, Ruifeng XIA, Dejun FENG, Suning LIU, Hongyu CHEN, Jun ZHU. Edge and global features integrated network for salient object detection in optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(7): 1265-1279. |
| [5] | Zibo DONG, Jingxue WANG, Lijing BU, Lin FANG, Zhenghui XU. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. |
| [6] | Haifeng LI, Wang GUO, Mengwei WU, Chengli PENG, Qing ZHU, Yu LIU, Chao TAO. Visual-language joint representation and intelligent interpretation of remote sensing geo-objects: principles, challenges and opportunities [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 853-872. |
| [7] | Chao WANG, Tianyu CHEN, Tong ZHANG, Tanvir AHMED, Liqiang JI, Tao XIE, Jiajun YANG, Shuai WANG. Multi-sensor optical remote sensing images change detection based on global differential enhancement module and balance penalty loss [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 873-887. |
| [8] | Yiming ZHAO, Kelin HU, Kelong TU, Yaxian QING, Chao YANG, Kunlun QI, Huayi WU. Multi-label scene classification method based on fusion of SAR and optical remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 911-923. |
| [9] | Xinchang ZHANG, Ji QI, Chao TAO, Siyang FU, Mingning GUO, Yongjian RUAN. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 603-620. |
| [10] | Zhaoyang HOU, Haowen YAN, Liming ZHANG, Rongjuan MA, Ruitao QU. Zero-watermark copyright protection method for remote sensing images based on coupled neural P system and blockchain [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2247-2261. |
| [11] | Hao WU, Dongyang HOU, Jun ZHANG, Ping ZHANG, Yuxuan LIU, Lei DU, Lu KANG, Tao CHENG, Jun CHEN. Research on key technologies of remote sensing based natural resources monitoring and supervision platform supported by dynamic service computing [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 1992-2008. |
| [12] | Xi GONG, Zhanlong CHEN, Hengqiang ZHENG, Sheng HU, Hongyan ZHANG. Remote sensing image scene classification method integrating spatial and semantic information of transferred features [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2009-2025. |
| [13] | Zhili ZHANG, Huiwei JIANG, Xiangyun HU. A minimal-interaction framework for accurate and batch extraction of geospatial objects from remote sensing imagery [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1863-1876. |
| [14] | Jichao LÜ, Rui ZHANG, Xu HE, Ruikai HONG, Age SHAMA, Guoxiang LIU. Multi-branch network assessment and dynamic change analysis of wide-area landslide susceptibility [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 104-122. |
| [15] | Jiayi TANG, Xiaochong TONG, Chunping QIU, Yaxian LEI, Yi LEI, Haoshuai SONG. Remote sensing scene retrieval method based on scene graph [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 123-135. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||